Психоделики помогли нейронам вырасти длинными и ветвистыми


Как создать новые нейронные связи головного мозга: несколько эффективных способов

Синаптогенез проще усилить. А сделать это можно, когда мозг еще не полностью сформирован (лет так до 25ти). Но даже в зрелом возрасте можно сформировать новые синапсы. Ниже мы рассмотрим как.

Те, кто находится в более чистой экологической обстановке, смогут вырастить больше новых синапсов, чем те, кто растет в стандартной или плохой. Хотя большинство исследований, анализирующих явление синаптогенеза было проведено на крысах, есть основания полагать, что многие из этих же методов могут быть эффективными у людей.

Увеличение на 25% означает увеличение общего количества нейронных соединений и путей распространения. Поэтому, для лучшего развития синапсов необходимо улучшить окружающую среду. Если невозможно сменить место жительство, то необходимо позаботиться о чистоте в доме. [R, R, R, R, R]

Известно, что изучение новых вещей полезно для мозга. Однако не любое «обучение» способно вызвать синаптогенез. Если вы хотите вырастить новые синапсы, вам нужно заниматься моторным обучением или изучать что-то новое, связанное с движением (например, жонглирование, настольный теннис и т.д.).

Ваш мозг должен координировать сложные движения конечностей с определенной деятельностью. Это не обязательно должна быть акробатическая тренировка. Каждый раз, когда вы занимаетесь моторным обучением (например, выясняете, как сделать определенный удар в настольном теннисе), формируются новые синапсы. [R, R, R]

Фосфолипиды

Фосфолипиды – это ключевые компоненты синаптических мембран. Исходя из этого, исследователи предположили, что введение предшественников фосфолипидов может привести к синаптогенезу. Среди них:

  • Уридин. Это «строительный блок» для РНК, который косвенно помогает в процессе формирования памяти. Уридин может работать вместе с холином, чтобы способствовать образованию новых синапсов.
  • Докозагексаеновая кислота (ДКГ, DHA). Это Омега-3 жирная кислота. Она улучшает когнитивные функции и общее психическое здоровье. Содержится в рыбьем жире и масле криля.
  • Холин. Это необходимое питательное вещество, которое служит предшественником ацетилхолина. Ацетилхолин необходим для синаптогенеза, а также ряда других нейрофизиологических функций. Лучшим источником холина являются яйца.

Считается, что антидепрессанты могут вызывать одновременно и нейрогенез (образование новых клеток мозга) и синаптогенез. Уже хорошо известно, что СИОЗС могут вызывать нейрогенез, но помогают ли они также в формировании новых синапсов, остается неясным.

Spadin (Спадин). Спадин — это новый антидепрессантный пептид, который ингибирует калиевый канал, называемый «TREK-1». В исследованиях на грызунах было обнаружено, что введение Спадина увеличивает множественные биомаркеры синаптогенеза, включая PSD-95 и синапсин-1. Позже исследователи подтвердили, что после лечения Спадином количество синапсов у грызунов значительно увеличилось. [R]

Кетамин. Он обеспечивает быстрое облегчение симптомов депрессии. Предварительные данные свидетельствуют о том, что уникальный механизм действия кетамина способен вызывать синаптогенез. Он действует на клеточный сигнальный путь, называемый «mTOR». Когда активирован путь «mTOR», в префронтальной коре появляется синаптогенез.

Модуляторы NMDA. Разрабатываются другие препараты, действующие на NMDA (глутамат), аналогичный кетамину, без психомиметических эффектов. Другими словами, фармацевтические и биотехнологические компании пытаются изолировать антидепрессантные механизмы от кетамина, исключая при этом возможность диссоциативных побочных эффектов, таких как галлюцинации или бред.

Другой способ вырастить новые синапсы — это изменить свое поведение. Исследование документально подтвердило, что самки птиц испытывали изменения в поведении при лечении тестостероном. Исследователи отметили, что 51% синапсов образовалось в области ядра переднего мозга, называемой “robustus archistriatalis” (RA). Увеличение размера синапсов и количества везикул на синапс связано с изменением поведения.

Известно, что изменения в поведении изменяют нейронную активацию и пути. Освоение нового моторного навыка связано с синаптогенезом. Возможно, что изменение поведения в течение определенного периода времени, независимо от того, что является причиной изменения поведения (например, лекарства, окружающая среда и т.д.), может привести к синаптогенезу. [R]

Синаптические связи между нейронами

Увеличение уровня гормонов может вызвать синаптогенез. В частности, повышение уровня тестостерона у мужчин способствует образованию новых синапсов, в то время как повышение уровня эстрадиола и прогестерона у женщин может иметь такой же эффект. Некоторые исследования показывают, что снижение выработки различных половых гормонов может тормозить синаптогенез.

Эстрадиол. Известно, что эстрадиол повышает синаптическую пластичность в области гиппокампа у самок крыс. В одном исследовании сообщалось, что снижение уровня эстрадиола привело к потере синапсов. Повышение уровня эстрадиола усиливало образование синапса в гиппокампе у самок. А вот ингибирование производства эстрадиола у самцов не влияет на синаптогенез.

Прогестерон. В исследовании, проведенном на крысах, применение прогестерона позволило провести синаптогенез в определенной области гиппокампа. Этот синаптогенез помог крысам с восстановлением нервов после инсульта (глобальная церебральная ишемия).

Тестостерон. На основании исследования, анализирующего влияние введения тестостерона на модели животных с рассеянным склерозом (РС), выяснилось, что тестостерон усиливает синаптогенез. Он также помогает сохранять нейроны в коре головного мозга. Увеличение синаптогенеза было связано с улучшением возбуждающей синаптической функции. [R,R, R, R, R]

В одном исследовании было обнаружено, что транскраниальная низкоуровневая лазерная терапия стимулирует образование новых синапсов. Изначально исследователи тестировали низкоуровневую лазерную терапию, основываясь на том, что травматические поражения головного мозга животных моделей улучшаются с применением ближнего инфракрасного света к их голове. Этот ближний инфракрасный свет уменьшает размер поражений мозга, сводит к минимуму воспаление и индуцирует нейрогенез.

Тестирование низкоуровневой лазерной терапии проводилось на моделях грызунов с интервалами в одну или три процедуры в день. Неврологические функции значительно улучшились для обработанных лазером грызунов по сравнению с необработанной контрольной группой. Это улучшение произошло в течение 2 недель и характеризовалось значительным увеличением синаптогенеза в результате повышения регуляции синапсина-1.

Лазерное лечение одновременно повысило BDNF (нейротрофический фактор мозга), еще один важный компонент психического здоровья. Несмотря на то, что это исследование проводилось на моделях грызунов, его результаты были значительными. Можно предположить, что аналогичные эффекты синаптогенеза могут возникнуть при низкоинтенсивной лазерной терапии у людей. [R]

Если вы хотите оптимизировать способность мозга формировать новые синапсы, вы должны научиться увеличивать уровень BDNF.

BDNF отвечает за помощь мозгу в формировании как возбуждающих, так и тормозных синапсов. Когда производство BDNF низкое, синапсы ослабевают. При высоком уровне производства BDNF существующие синапсы укрепляются за счет долговременного потенцирования. [R, R]

Различные белки

Выработка эндогенных белков помогает стимулировать образование новых синапсов. К белкам, которые были задокументированы как возбудители синаптогенеза, относятся: Нетрин, Остеопонтин и Тромбоспондин.

Нетрин. Считается, что этот белок способствует образованию нейронных цепей в переднем мозгу млекопитающих, особенно в периоды пикового образования синапса. Исследователи показали, что «Нетрин-1» в состоянии развивать синаптогенез в корковых нейронах крыс и мышей. В частности, Netrin-1 увеличивает количество и силу возбуждающих синапсов между корковыми нейронами.

Остеопонтин. Это белковая молекула, которая улучшает реорганизацию и восстановление синапса после травмы головного мозга. Считается, что он способствует развитию синаптогенеза через его действие на синаптин-1.

Тромбоспондин. Это белок, который выделяется из глиальных клеток и способствует развитию синаптогенеза, одновременно поддерживая стабильность синапса. Считается, что он также помогает в реконструкции синапсов после черепно-мозговой травмы или воздействия различных лекарственных препаратов. [R, R, R]

Выбирая между привычным и новым поведением, большинство людей отдаст предпочтение первому варианту. Почему? От многих мужчин и женщин можно услышать такую фразу: «Умом я все понимаю, но ничего не могу с собой поделать. Я говорю себе, что сложившаяся ситуация меня совершенно не устраивает, но продолжаю вести себя так, как вел (вела) раньше!». Парадокс? Нет! Все дело в уже сформировавшихся нейронных связях!

Чем крепче нейронная связь, тем больше образовывается синапсов (синапс — место контакта между двумя нервными клетками), и тем мощнее и эффективнее становятся электрические сигналы между входящими в эту связь нервными клетками. Чем больше формируется синапсов, тем активнее и эффективнее они начинают работать.

Синаптические связи мозга и верующие нейроны

Мозг состоит примерно из ста миллиардов нейронов нескольких сотен видов, у каждого из которых есть тело клетки, нисходящий отросток-аксон и многочисленные дендриты и терминали аксона, расходящиеся к другим нейронам и образующие примерно тысячу триллионов синаптических связей между этими ста миллиардами нейронов. Названные цифры ошеломляют. Сто миллиардов нейронов – это 1011, или единица, а за ней 11 нулей: 100000000000. Связи тысячи триллионов – квадрильон, или 1015, или единица, за которой следуют 15 нулей: 1000000000000000. Нейронов в человеческом мозге примерно столько же, сколько звезд в галактике Млечный Путь – в буквальном смысле слова астрономическое число! Количество синаптических связей мозга равнозначно количеству секунд в 30 миллионах лет. Задумайтесь об этом на минуту. Начните отсчитывать секунды способом «одна одна тысяча, две одна тысяча, три одна тысяча…» Когда доберетесь до 86400, получится количество секунд в сутках, когда достигнете 31536000, – количество секунд в году, когда наконец дойдете до одного триллиона секунд, значит, вы считаете уже примерно 30 тысяч лет. А теперь повторите этот счет продолжительностью в 30 тысяч лет еще одну тысячу раз, и вы отсчитаете количество синаптических связей в своем мозге.

Количество синаптических связей мозга равнозначно количеству секунд в 30 миллионах лет.

Разумеется, большое количество нейронов обеспечивает значительную вычислительную мощность (как добавление микросхем или карт памяти в компьютер), однако действия производятся в самих отдельных нейронах. Нейронам присуща элегантная простота, вместе с тем это прекрасные в своей сложности машины для обработки электрохимической информации. Внутри нейрона в состоянии покоя больше калия, чем натрия, а преобладание анионов, отрицательно заряженных ионов, создает внутри клетки отрицательный заряд. В зависимости от вида нейрона при введении крошечного электрода в его тело в состоянии покоя мы получим показания –70 мВ (милливольт – одна тысячная вольта). В состоянии покоя клеточная оболочка нейрона непроницаема для натрия, но пропускает калий. При стимуляции нейрона действиями других нейронов (или электрическими манипуляциями любопытных нейробиологов, вооруженных электродами) проницаемость клеточной оболочки меняется, натрий проникает в клетку и таким образом электрический баланс смещается с –70 мВ до нуля. Это явление называется возбудительным постсинаптическим потенциалом

, или ВПСП.
Синапс
– это крохотный зазор между нейронами, следовательно, термин
постсинаптический
означает, что нейрон на стороне приема сигнала, преодолевающего синаптическую щель, возбуждается, чтобы достичь своего потенциала срабатывания. В отличие от этого, если стимуляция исходит от тормозящего нейрона, напряжение смещается в отрицательную сторону, от –70 мВ до –100 мВ, в итоге срабатывание нейрона становится менее вероятным. Это явление называется
тормозящим постсинаптическим потенциалом
, или ТПСП. Хотя различных видов нейронов насчитываются сотни, большинство мы можем отнести либо к возбудительным, либо тормозящим по типу действия.

Если при нарастании ВПСП достигает достаточного значения (в результате многочисленных срабатываний одного нейрона за другим или множества связей с другими нейронами), тогда проницаемость клеточной оболочки нейрона достигает критического значения

, натрий врывается в него, вызывает мгновенный всплеск напряжения до +50 мВ, оно распространяется по всему телу клетки и поэтапно спускается по аксону в терминали. С той же быстротой напряжение нейрона вновь снижается до –80 мВ, а затем возвращается к –70 мВ в состоянии покоя. Этот процесс приобретения клеточной оболочкой проницаемости для натрия и соответствующего изменения напряжения с отрицательного на положительное, переходящее по аксону к дендритам и синаптическим связям с другими нейронами, называется
потенциалом действия
. Чаще мы пользуемся выражением «клетка возбудилась». Нарастание ВПСП называется
суммацией
. Известно два вида: (1)
временная суммация
, при которой двух ВПСП одного нейрона достаточно для того, чтобы принимающий нейрон достиг критической точки и возбудился; и (2)
пространственная суммация
, при которой два ВПСП от двух разных нейронов появляются одновременно и их достаточно для того, чтобы принимающий нейрон достиг критической точки и возбудился. Это электрохимическое изменение напряжения происходит стремительно, натриевая проницаемость распространяется последовательно по аксону от тела клетки к терминалям, и это явление, как и следовало ожидать, называется
распространением
. Скорость распространения зависит от двух условий: (1) диаметра аксона (чем больше, тем быстрее) и (2) миелинизации аксона (чем больше миелиновая оболочка, покрывающая и изолирующая аксон, тем быстрее происходит распространение импульса по нему).[102]

Отметим: если критическая точка возбуждения нейрона не достигнута, он не возбуждается; если критическая точка достигнута, нейрон возбуждается. Эта система работает по принципу «или-или», «все или ничего». Нейроны не возбуждаются «слегка» в ответ на слабые раздражители или «сильно» в ответ на сильные раздражители. Они либо возбуждаются, либо не возбуждаются. Следовательно, нейроны передают информацию одним из трех способов: (1) частотой возбуждения

(количеством потенциалов действия в секунду), (2)
местом возбуждения
(какие именно нейроны возбуждаются) и (3)
численностью возбуждения
(сколько нейронов возбуждается). Поэтому говорят, что нейроны двоичны по действию, подобны двоичным символам компьютера, 1 и 0, соответствуют сигналу включения или выключения, проходящему или не проходящему по нервному пути. Если рассматривать эти нейронные состояния «включить или выключить» как один из типов ментального состояния, когда один нейрон дает нам два таких состояния (включение или выключение), тогда при обработке информации о мире и управляемом организме у мозга есть 2×1015 возможных вариантов на выбор. Поскольку мы не в состоянии охватить разумом все это число, можно сказать, что мозг во всех отношениях является бесконечно большой машиной для обработки информации.

Каким образом отдельные нейроны и их потенциал действия создают сложные мысли и убеждения? Процесс начинается с так называемого нейронного связывания

. «Красный круг» – пример объединения двух входящих сигналов («красный» и «круг») в один воспринимаемый объект, красный круг. Нейронные сигналы от мышц и органов чувств сливаются, двигаясь «вверх по течению», через
зоны конвергенции
– области мозга, объединяющие информацию, содержащуюся в разных нейронных сигналах (от глаз, ушей, органов осязания и т. д.), чтобы в итоге мы получили представление об объекте в целом, а не о бесчисленных фрагментах изображения. Глядя на перевернутый снимок президента Обамы в главе 4, мы поначалу воспринимаем лицо как одно целое и лишь потом начинаем замечать, что с глазами и ртом что-то не так; как уже объяснялось, причина в том, что две разные нейронные сети действуют с различной скоростью: сначала происходит восприятие лица в целом, затем – деталей этого лица.

Однако связывание – значительно более широкое явление. Объектов, воспринимаемых разными органами чувств, может быть множество, и все они должны связаться воедино в высших областях мозга, чтобы обрести смысл. Крупные отделы мозга, такие, как кора больших полушарий, координируют сигналы от меньших участков мозга, например от височных долей, которые, в свою очередь, объединяют нейронные события от еще меньших компонентов мозга, например от веретенообразной извилины (для распознавания лиц). Это уменьшение происходит на всем пути до уровня единственного нейрона, где нейроны с высокой избирательностью (иногда их называют «бабушкиными») возбуждаются лишь в том случае, когда субъекты видят того, кого знают. Есть нейроны, которые возбуждаются лишь в том случае, когда объект движется слева направо через поле зрения наблюдателя. Есть другие нейроны, которые срабатывают, только когда объект движется справа налево через поле зрения наблюдателя. И есть третьи нейроны, обладающие потенциалом действия только при получении сигналов ВПСП от других нейронов, возбуждающихся в ответ на диагональное движение объектов в поле зрения. Так в нейронных сетях и происходит процесс связывания. Есть даже нейроны, которые возбуждаются, только когда мы видим того, кого узнаем. Нейробиологи из Калтеха Кристоф Кох и Габриэль Крейман совместно с нейрохирургом из Калифорнийского университета в Лос-Анджелесе Ицхаком Фридом обнаружили, например, единственный нейрон, который возбуждается, когда участнику эксперимента показывают снимок Билла Клинтона и более никого. Другой срабатывает, только если участнику показать снимок Дженнифер Энистон, но лишь ее одной, без Брэда Питта.[103]

Разумеется, мы не осознаем работу наших электрохимических систем. Что мы в действительности испытываем, так это субъективные состояния мыслей и чувств, возникающие при объединении нейронных событий и названные философами квалиа

. Но даже сами квалиа – один из видов эффекта нейронного связывания, объединения сигналов от бесчисленных нейронных сетей «низшего порядка». Все действительно сводится к электрохимическому процессу нейронного потенциала действия, или к возбуждению нейронов и установлению связи друг с другом с передачей информации. Как им это удается? Опять-таки благодаря химии.

Связь между нейронами возникает в немыслимо крохотной синаптической щели между ними. Когда потенциал действия нейрона устремляется по аксону и достигает его терминалей, он вызывает выброс в синапс мельчайших порций химических трансмиттерных веществ (ХТВ). Полученные соединяющимися нейронами ХТВ действуют как ВПСП, меняя напряжение и проницаемость постсинаптического нейрона, тем самым вызывая его возбуждение и распространение его потенциала действия вниз по аксону до терминалей, где он выбрасывает свои ХТВ в следующий синаптический зазор, и так далее по всей линии нейронной сети. Когда мы ушибаем палец ноги, сигнал боли проходит от болевых рецепторов в тканях нашего пальца ноги весь путь вверх до мозга, который замечает боль и передает сигнал другим участкам мозга, посылающим дополнительные сигналы в сокращающиеся мышцы, чтобы мы отдернули ногу от злополучного препятствия. Все это происходит так быстро, что кажется почти мгновенным.

Существует много видов ХТВ. К самым известным относятся катехоламины

, в том числе
допамин, норадреналин (норэпинефрин)
и
адреналин (эпинефрин)
. ХТВ действуют на постсинаптический нейрон, как ключ на замок. Если ключ подошел и повернулся, нейрон срабатывает; в противном случае дверь остается запертой, а постсинаптический нейрон невозбужденным. После возникновения процесса возбуждения большинство неиспользованных ХТВ возвращается в пресинаптический нейрон, где-либо используется повторно, либо разрушается моноаминоксидазой (МАО) в процессе так называемого
первого поглощения
. Если в синаптическом зазоре присутствует слишком много ХТВ, тогда остаток всасывается в постсинаптический нейрон в процессе
второго поглощения
.

Наркотики воздействуют на синапсы, выброс ХТВ и последующие процессы поглощения. Например, амфетамины ускоряют выброс ХТВ в синапсы, тем самым ускоряя процесс нейронной коммуникации, потому и называются speed

(«скорость»). Резерпин, который некогда был обычным назначением при психозах, разрушает пузырьки с ХТВ в пресинаптическом нейроне, поэтому МАО уничтожают их еще до использования, в итоге замедляют работу нейронных сетей, контролируют маниакальные состояния, гипертензию и другие симптомы гиперактивности нервной системы. Кокаин блокирует первое поглощение, поэтому ХТВ просто задерживаются в синапсе и способствуют ускоренному возбуждению нейронов, доводят нейронные сети до состояния взвинченности – вспомните Робина Уильямса с микрофоном перед аудиторией; в сущности, сам Уильямс в значительной мере приписывает успех своих комедий в 1980-х годах собственной кокаиновой зависимости. Как один из самых распространенных ХТВ, допамин играет решающую роль в беспрепятственной коммуникации между нейронами и мышцами, а когда его недостаточно, у пациентов наблюдаются потеря регуляции моторики и неудержимая дрожь. Эти проявления называются болезнью Паркинсона, один из методов лечения которой – L-dopa, агонист допамина, стимулирующий его выработку.

Как нам построить всю систему снизу доверху, начиная с химических трансмиттерных веществ, таких как допамин, и связывая сигналы в единую систему убеждений? Посредством поведения. Напомню, что первичная функция мозга – управлять телом и помогать ему выжить. Один из способов сделать это – посредством ассоциативного обучения, или паттерничности. Это и есть связующее звено между нейронным потенциалом действия и человеческими поступками.

Допамин, наркотик веры

Из всех химических трансмиттерных веществ, плещущихся у нас в мозге, допамин, по-видимому, самым непосредственным образом связан с нейронными коррелятами веры. В сущности, допамин играет решающую роль в ассоциативном обучении и в подкрепляющей системе мозга, которую Скиннер открыл, применяя свой метод выработки условного рефлекса, когда любому подкрепленному поведению было свойственно повторяться. По определению, подкрепление – то, что служит наградой для организма, то есть побуждает мозг заставлять тело повторять это поведение, чтобы получить еще одно позитивное подкрепление. Вот как это происходит.

В стволе разделенного головного мозга, одной из наиболее древних с точки зрения эволюции областей мозга, которая есть у всех позвоночных, имеются полости или карманы с приблизительно 15–24 тысячами вырабатывающих допамин нейронов с каждой стороны, длинные аксоны которых соединяются с другими областями мозга. Эти нейроны стимулируют выброс допамина всякий раз, когда полученное вознаграждение оказывается больше ожидаемого, в итоге индивид повторяет конкретное поведение. Выброс допамина – одна из форм предоставления информации, сообщение организму: «Сделай это еще раз». Допамин создает ощущение удовольствия, которым сопровождается решение задачи или достижение цели, в итоге организм хочет повторить то же самое поведение, будь то выжимание штанги, нажатие клавиши или манипуляции с рычагом механизма. Ты получаешь отклик (подкрепление), а твой мозг – дозу допамина. Поведение – Подкрепление – Поведение. Повторяющаяся последовательность

.

Однако у допаминовой системы есть свои плюсы и минусы. К плюсам можно отнести то, что допамин имеет отношение к пучку нейронов размером с орешек арахиса, расположенному посреди мозга и называющемуся nucleus accumbens

(NAcc) – прилежащим ядром, которое, как известно, ассоциируется с наградой и удовольствием. В сущности, допамин, по-видимому, служит топливом этому так называемому центру удовольствия мозга, участвующему в «кайфе», который вызывают как кокаин, так и оргазм. «Центр удовольствия» был открыт в 1954 году Джеймсом Олдсом и Питером Милнером из Университета Макгилла, которые случайно вживили электрод в NAcc крысы и обнаружили, что грызун резко возбудился. Затем ученые сконструировали аппарат, который при нажатии крысой на планку создавал небольшую электрическую стимуляцию той же области мозга. Крысы давили на планку, пока не падали в изнеможении, даже забывали про пищу и воду.[104]Тот же эффект с тех пор был выявлен у всех участвовавших в экспериментах млекопитающих, в том числе и у людей, которые перенесли операцию на мозге и получили стимуляцию NAcc. Свои ощущения они описывали словом «
оргазм
».[105]Вот
это
и есть типичный образец позитивного подкрепления!

К сожалению, у допаминовой системы есть и минусы, а именно развивающаяся зависимость. Наркотики, вызывающие привыкание, играют роль сигнала награды, поступающего в допаминовые нейроны. Азартные игры, порнография, такие наркотики, как кокаин, способны вызвать в мозге ответный прилив допамина. Тот же эффект дают идеи, вызывающие зависимость, особенно неудачные

идеи вроде тех, которые пропагандируют культы, например, призывающие к массовым самоубийствам (вспомните Джонстаун и «Небесные врата»), или религии, поощряющие действия террористов-смертников (вспомните теракты 11 сентября и 7 июля).

Важное предостережение насчет допамина

: нейробиологи делают четкое различие между «предпочтением» (удовольствием) и «желанием» (мотивацией), и в настоящее время продолжаются оживленные споры о том, чему именно способствует допамин – стимуляции удовольствия или мотивации поведения. Позитивное подкрепление может привести к повторам поведения, поскольку вызывает приятные ощущения (предпочтение, или чистое удовольствие от полученной награды) или неприятные ощущения, если поведение не повторяется (желание, или мотивация избегать беспокойства из-за неполучения награды). Первая награда связана с чистым удовольствием от, допустим, оргазма, вторая – с беспокойством, которое ощущает зависимый человек, когда получение следующей дозы внушает сомнения. Исследования, на которые я ссылаюсь выше, подтверждают предположение об удовольствии, однако по результатам новых исследований ученые склоняются к мотивации.[106]Нейробиолог Рассел Полдрак из Калифорнийского университета в Лос-Анджелесе рассказывал мне, что вновь полученные данные подразумевают «роль допамина скорее в мотивации, чем в удовольствии как таковом, в то время как опиоидная система, по всей видимости, играет центральную роль в удовольствии». Например, он указывает, что «можно блокировать допаминовую систему у крыс, и они все равно будут радоваться наградам, но не захотят стараться ради их получения».[107]Это трудноуловимое, но важное отличие, однако в целях нашего понимания нейронных коррелятов веры центральным является тот момент, что допамин подкрепляет поступки, убеждения и паттерничность и таким образом является одним из первичных «наркотиков веры».

Связь между допамином и верой была установлена в ходе экспериментов, проведенных Питером Браггером и его коллегой Кристиной Моор в Бристольском университете, Англия. Исследуя нейрохимию суеверий, магического мышления и веры в паранормальные явления, Браггер и Моор обнаружили, что люди с высоким уровнем допамина с большей вероятностью находят смысл в совпадениях и усматривают значения и закономерности там, где их нет. Например, в одном исследовании сравнивали двадцать человек, объявивших, что они верят в призраков, богов, духов и заговоры, с двадцатью участниками, которые объявили о своем скептическом отношении к подобной вере. Всем участникам показали ряд слайдов с человеческими лицами, среди которых были как нормальные, так и «перепутанные», например, на некоторых глаза, уши или носы относились к другим лицам. В следующем эксперименте на экране вспыхивали существующие и произвольно составленные слова. В целом ученые обнаружили, что верующие с гораздо большей вероятностью, чем скептики, по ошибке принимали «перепутанное» лицо за настоящее, а придуманное слово – за обычное.

Допамин – наркотик веры. Люди с высоким уровнем допамина с большей вероятностью находят смысл в совпадениях и усматривают значения

и закономерности там, где их нет.

Во второй части того же эксперимента Браггер и Моор дали всем сорока участникам L-dopa, препарат, который назначают пациентам с болезнью Паркинсона, чтобы повысить уровень допамина в мозге. После этого показ слайдов с лицами и словами повторили. Прилив допамина вызывал и у верующих, и у скептиков стремление воспринимать «перепутанные» лица, а также придуманные слова как обычные. Это свидетельствует о том, что паттерничность может ассоциироваться с высоким уровнем допамина в мозге. Любопытно, что на скептиков L-dopa действовал сильнее, чем на верующих. Иначе говоря, повышенный уровень допамина, по-видимому, уменьшал скептицизм скептиков эффективнее, чем усиливал веру верующих.[108]Почему? В голову приходят два возможных объяснения: (1) возможно, уровень допамина у верующих и без того выше, чем у скептиков, значит, последние острее ощущают его влияние; или (2) возможно, склонность верующих к паттерничности уже настолько высока, что эффект допамина у них ниже, чем у скептиков. Дополнительные исследования показали, что люди, заявляющие о своей вере в паранормальные явления, по сравнению со скептиками демонстрировали повышенную склонность усматривать «закономерности, или паттерны, в шумах»[109]и приписывать смысл произвольным связям, существующим по их мнению.[110]

Услышать в шуме сигнал

Так что же именно делает допамин, усиливая веру? Согласно одной теории, пропагандируемой Моор, Браггером и их коллегами, допамин повышает соотношение «сигнал-шум», то есть количество сигналов, который ваш мозг выявляет в фоновом шуме.[111]Такова проблема обнаружения ошибок, связанная с паттерничностью. Соотношение «сигнал-шум», в сущности, и есть проблема паттерничности – поиск значимых закономерностей как в исполненных смысла, так и в бессмысленных шумах. «Сигнал-шум» – соотношение паттернов, которые ваш мозг выявляет в фоновом шуме независимо от того, настоящие это паттерны или мнимые. Каким образом допамин влияет на этот процесс?

Допамин усиливает способность нейронов передавать сигналы от одного к другому. Как? Выступая в роли агониста (в противоположность антагонисту), или вещества, усиливающего активность нейронов, допамин соединяется с особыми участками молекул рецепторов в синаптической щели нейронов, как ХТВ, обычно связывающиеся с ними.[112]При этом увеличивается уровень срабатывания нейронов в связи с распознанием паттерна, а это означает, что количество синаптических связей между нейронами скорее всего увеличится в ответ на воспринятый паттерн, тем самым впечатывая воспринятые паттерны в долгосрочную память благодаря реальному физическому росту новых нейронных соединений и усилению прежних синаптических связей.

Прилив допамина вызывает усиление обнаружения паттернов; ученые выяснили, что агонисты допамина не только способствуют обучению, но и в больших дозах могут спровоцировать симптомы психоза, такие, как галлюцинации, возможно, связанные с тонкой гранью между креативностью (избирательная паттерничность) и безумием (неизбирательной паттерничностью). Все зависит от дозы. Если она слишком велика, скорее всего, возникнут ошибки первого типа, ложноположительное срабатывание, при которых мы видим связи там, где их на самом деле нет. Если доза слишком мала, возникают ошибки второго типа, ложноотрицательное срабатывание, при которых мы упускаем из виду реально существующие связи. Все дело в соотношении «сигнал-шум».

Предыдущая14Следующая

Классификации синапсов

Основные элементы электрического синапса (эфапса): а — коннексон в закрытом состоянии; b — коннексон в открытом состоянии; с — коннексон, встроенный в мембрану; d —

мономер

коннексина, е —

плазматическая мембрана

; f — межклеточное пространство; g — промежуток в 2-4 нанометра в электрическом синапсе; h —

гидрофильный

канал коннексона

  • химический — это место близкого прилегания двух нервных клеток, для передачи нервного импульса через которое клетка-источник выпускает в межклеточное пространство особое вещество, нейромедиатор, присутствие которого в синаптической щели возбуждает или затормаживает клетку-приёмник.
  • электрический (эфапс) — место более близкого прилегания пары клеток, где их мембраны соединяются с помощью особых белковых образований — коннексонов (каждый коннексон состоит из шести белковых субъединиц). Расстояние между мембранами клетки в электрическом синапсе — 3,5 нм (обычное межклеточное — 20 нм). Так как сопротивление внеклеточной жидкости мало (в данном случае), импульсы через синапс проходят не задерживаясь. Электрические синапсы обычно бывают возбуждающими.
  • смешанные синапсы — пресинаптический потенциал действия создает ток, который деполяризует постсинаптическую мембрану типичного химического синапса, где пре- и постсинаптические мембраны не плотно прилегают друг к другу. Таким образом, в этих синапсах химическая передача служит необходимым усиливающим механизмом.

Наиболее распространены химические синапсы. Для нервной системы млекопитающих электрические синапсы менее характерны, чем химические.

Проводящие пути

Нервная система имеет свои сферы влияния по всему организму. С помощью проводящих волокон осуществляется нервная регуляция систем, органов и тканей. Мозг, благодаря широкой системе проводящих путей, полностью контролирует анатомическое и функциональное состояние всякой структуры организма. Почки, печень, желудок, мышцы и другие – все это инспектирует головной мозг, тщательно и кропотливо координируя и регулируя каждый миллиметр ткани. А в случае сбоя – корректирует и подбирает подходящую модель поведения. Таким образом, благодаря проводящим путям организм человека отличается автономностью, саморегуляцией и адаптивностью к внешней среде.

Проводящий путь – это скопление нервных клеток, функция которых заключается в обмене информации между различными участками тела.

  • Ассоциативные нервные волокна. Эти клетки соединяют между собой различные нервные центры, что располагаются в одном полушарии.
  • Комиссуриальные волокна. Эта группа отвечает за обмен информацией между аналогичными центрами головного мозга.
  • Проекционные нервные волокна. Данная категория волокон сочленяет головной мозг со спинным.
  • Экстероцептивные пути. Они несут электрические импульсы от кожи и других органов чувств к спинному мозгу.
  • Проприоцептивные. Такая группа путей проводят сигналы от сухожилий, мышц, связок и суставов.
  • Интероцептивные проводящие пути. Волокна этого тракта берут начало из внутренних органов, сосудов и кишечных брыжеек.

Механизм функционирования химического синапса

Типичный синапс — аксо-дендритическийхимический. Такой синапс состоит из двух частей: пресинаптической, образованной булавовидно расширенным окончанием аксона передающей клетки и постсинаптической, представленной контактирующим участком плазматической мембраны воспринимающей клетки (в данном случае — участком дендрита).

Между обеими частями имеется синаптическая щель — промежуток шириной 10—50 нм между постсинаптической и пресинаптической мембранами, края которой укреплены межклеточными контактами.

Часть аксолеммы булавовидного расширения, прилежащая к синаптической щели, называется пресинаптической мембраной. Участок цитолеммы воспринимающей клетки, ограничивающий синаптическую щель с противоположной стороны, называется постсинаптической мембраной, в химических синапсах она рельефна и содержит многочисленные рецепторы.

В синаптическом расширении имеются мелкие везикулы, так называемые синаптические пузырьки, содержащие либо медиатор (вещество-посредник в передаче возбуждения), либо фермент, разрушающий этот медиатор. На постсинаптической, а часто и на пресинаптической мембранах присутствуют рецепторы к тому или иному медиатору.

При деполяризации пресинаптической терминали открываются потенциал-чувствительные кальциевые каналы, ионы кальция входят в пресинаптическую терминаль и запускают механизм слияния синаптических пузырьков с мембраной. В результате медиатор выходит в синаптическую щель и присоединяется к белкам-рецепторам постсинаптической мембраны, которые делятся на метаботропные и ионотропные.

Первые связаны с G-белком и запускают каскад реакций внутриклеточной передачи сигнала. Вторые связаны с ионными каналами, которые открываются при связывании с ними нейромедиатора, что приводит к изменению мембранного потенциала. Медиатор действует в течение очень короткого времени, после чего разрушается специфическим ферментом.

Например, в холинэргических синапсах фермент, разрушающий медиатор в синаптической щели — ацетилхолинэстераза. Одновременно часть медиатора может перемещаться с помощью белков-переносчиков через постсинаптическую мембрану (прямой захват) и в обратном направлении через пресинаптическую мембрану (обратный захват). В ряде случаев медиатор также поглощается соседними клетками нейроглии.

Открыты два механизма высвобождения: с полным слиянием везикулы с плазмалеммой и так называемый «поцеловал и убежал» (англ. kiss-and-run), когда везикула соединяется с мембраной, и из неё в синаптическую щель выходят небольшие молекулы, а крупные остаются в везикуле. Второй механизм, предположительно, быстрее первого, с помощью него происходит синаптическая передача при высоком содержании ионов кальция в синаптической бляшке.

Следствием такой структуры синапса является одностороннее проведение нервного импульса. Существует так называемая синаптическая задержка — время, нужное для передачи нервного импульса. Её длительность составляет около — 0,5 мс.

Так называемый «принцип Дейла» (один нейрон — один медиатор) признан ошибочным. Или, как иногда считают, он уточнён: из одного окончания клетки может выделяться не один, а несколько медиаторов, причём их набор постоянен для данной клетки.

Взаимодействие с нейромедиаторами

Нейроны разного местонахождения общаются между собой с помощью электрических импульсов химической природы. Так, что же лежит в основе их образования? Существуют так называемые нейромедиаторы (нейротрансмиттеры) – сложные химические соединения. На поверхности аксона располагается нервный синапс – контактная поверхность. С одной стороны находится пресинаптическая щель, а с другой – постсинаптическая. Между ними находится щель – это и есть синапс. На пресинаптической части рецептора располагаются мешочки (везикулы), содержащие определенное количество нейромедиаторов (квант).

Когда импульс подходит к первой части синапса, инициируется сложный биохимический каскадный механизм, в результате которого мешочки с медиаторами вскрываются, и кванты веществ-посредников плавно вытекают в щель. На этом этапе импульс исчезает, и появляется вновь только тогда, когда нейромедиаторы достигают постсинаптической щели. Тогда снова активируются биохимические процессы с открытиями ворот для медиаторов и те, действуя на мельчайшие рецепторы, преобразуются в электрический импульс, идущий далее в глубины нервных волокон.

Между тем выделяют разные группы этих самых нейромедиаторов, а именно:

  • Тормозные нейромедиаторы – группа веществ, осуществляющие тормозное действие на возбуждение. К ним относят: гамма-аминомасляную кислоту (ГАМК);
  • глицин.
  • Возбуждающие медиаторы:
      ацетилхолин;
  • дофамин;
  • серотонин;
  • норадреналин;
  • адреналин.
  • История открытия

    • В 1897 году Шеррингтон сформулировал представление о синапсах.
    • За исследования нервной системы, в том числе синаптической передачи, в 1906 году Нобелевскую премию получили Гольджи и Рамон-и-Кахаль.
    • В 1921 австрийский учёный О. Лёви (О. Loewi) установил химическую природу передачи возбуждения через синапсы и роль в ней ацетилхолина. Получил Нобелевскую премию в 1936 г. совместно с Г. Дейлом (Н. Dale).
    • В 1933 советский учёный А. В. Кибяков установил роль адреналина в синаптической передаче.
    • 1970 — Б. Кац (В. Katz, Великобритания), У. фон Эйлер (U. v. Euler, Швеция) и Дж. Аксельрод (J. Axelrod, США) получили Нобелевскую премию за открытие роли норадреналина в синаптической передаче.

    «Проводка»

    Нейронные связи головного мозга — проводка нервной системы. Работа нервной системы основана на способности нейрона воспринимать, обрабатывать и передавать информацию другим клеткам.

    Информация передается через нервный импульс. Поведение человека и функционирование его организма полностью зависит от передачи и получения импульсов нейронами через отростки.

    У нейрона два типа отростков: аксон и дендрит. Аксон у нейрона всегда один, именно по нему нейрон передает импульс другим клеткам. Получает же импульс через дендриты, которых может быть несколько.

    К дендритам «подведено» множество (иногда десятки тысяч) аксонов других нейронов. Дендрит и аксон контактируют через синапс.

    Функции нейрона

    Несмотря на относительно не сложное строение, нейрон обладает множеством функций, главные из которых следующие:

    • восприятие раздражения;
    • обработка стимула;
    • передача импульса;
    • формирование ответной реакции.

    Функционально нейроны подразделяются на три группы:

    Кроме этого в нервной системе функционально выделяют еще одну группу – тормозящие (отвечают за торможения возбуждения клеток) нервы. Такие клетки противодействуют распространению электрического потенциала.

    Рецепторы

    Рецепторы вспоминают каждый раз, когда говорят про наркотическую или алкогольную зависимость. Почему же человеку необходимо руководствоваться принципом умеренности?

    Рецептор на постсинаптической мембране — белок, настроенный на молекулы медиатора. Когда человек искусственно (наркотиками, например) стимулирует выброс медиаторов в синаптическую щель, синапс пытается вернуть равновесие: снижает количество рецепторов или их чувствительность. Из-за этого естественные уровни концентрации медиаторов в синапсе перестают оказывать действие на нейронные структуры.

    Например, курящие люди никотином изменяют восприимчивость рецепторов к ацетилхолину, происходит десенсибилизация (уменьшение чувствительности) рецепторов. Естественный уровень ацетилхолина оказывается недостаточным для рецепторов с пониженной чувствительность. Т.к. ацетилхолин задействован во многих процессах, в том числе, связанных с концентрацией внимания и ощущением комфорта, курящий не может получить полезные эффекты работы нервной системы без никотина.

    Впрочем, чувствительность рецепторов постепенно восстанавливается. Хотя это может занимать долгое время, синапс приходит в норму, и человеку больше не требуются сторонние стимуляторы.

    Нейрон и синапсы

    Щель между дендритом и аксоном — синапс. Т.к. аксон «источник» импульса, дендрит «принимающий», а синаптическая щель — место взаимодействия: нейрон, от которого идет аксон, называют пресинаптическим; нейрон, от которого идет дендрит, — постсинаптическим.

    Синапсы могут формироваться и между аксоном и телом нейрона, и между двумя аксонами или двумя дендритами. Многие синаптические связи образованы дендритным шипиком и аксоном. Шипики очень пластичны, обладают множеством форм, могут быстро исчезать и формироваться. Они чувствительны к химическим и физическим воздействиям (травмы, инфекционные заболевания).

    В синапсах чаще всего информация передается посредством медиаторов (химических веществ). Молекулы медиатора высвобождаются на пресинаптической клетке, пересекают синаптическую щель и связываются с мембранными рецепторами постсинаптической клетки. Медиаторы могут передавать возбуждающий или тормозящий (ингибирующий) сигнал.

    Смотреть галерею

    Нейронные связи головного мозга представляют собой соединение нейронов через синаптические связи. Синапсы — функциональная и структурная единица нервной системы. Количество синаптических связей — ключевой показатель для работы мозга.

    Смотреть галерею

    Ссылки

    • Савельев А. В. Методология синаптической самоорганизации и проблема дистальных синапсов нейронов // Журнал проблем эволюции открытых систем. — Казахстан, Алматы, 2006. — Т. 8, № 2. — С. 96—104.
    • Экклз Д. К. Физиология синапсов. — М.: Мир, 1966. — 397 с.
    Нейроны (Серое вещество)
    Афферентный нерв/ Сенсорный нейрон
    Эфферентный нерв/ Моторный нейрон
    Синапс
    Сенсорный рецептор
    Нейроглия
    Миелин (Белое вещество)
    Соединительная ткань

    Эта страница в последний раз была отредактирована 5 мая 2020 в 18:41.

    Развитие нейронных сетей

    Долговременные изменения нейронных связей происходят при различных болезнях (психических и неврологических — шизофрения, аутизм, эпилепсия, болезнях Хантингтона, Альцгеймера и Паркинсона). Синаптические связи и внутренние свойства нейронов изменяются, что приводит к нарушению работы нервной системы.

    За развитие синаптических связей отвечает активность нейронов. «Используй или потеряешь» — принцип, лежащий в основе нейронных сетей мозга. Чем чаще «действуют» нейроны, тем больше между ними связей, чем реже, тем меньше связей. Когда нейрон теряет все свои связи, он погибает.

    Некоторые авторы высказывают и другие идеи, которые отвечают за регуляцию развития нейронных сетей. M. Butz связывает образование новых синапсов с тенденцией мозга поддерживать «привычный» уровень активности.

    Когда средний уровень активности нейронов падает (например, вследствие травмы), нейроны строят новые контакты, с количеством синапсов растет активность нейронов. Верно и обратное: как только уровень активности становится больше привычного уровня, количество синаптических соединений уменьшается. Подобные формы гомеостаза часто встречаются в природе, например, при регуляции температуры тела и уровня сахара в крови.

    Генри Маркрам, который участвует в проекте по созданию нейронной симуляции мозга, подчеркивает перспективы развития отрасли для изучения нарушения, восстановления и развития нейронных связей. Группа исследователей уже оцифровала 31 тысячу нейронов крысы. Нейронные связи мозга крысы представлены в видео ниже.

    Колыбель – не начало

    Как сообщают ученые, 70% нейронов человека погибает еще до его рождения. Это происходит за счет стремительного развития плода от крохотного эмбриона до полноценного младенца всего за девять месяцев. То же самое происходит в течение жизни людей – они постоянно теряют нейроны, и с каждым годом тех становится все меньше. На вопрос «сколько нейронов в мозге человека при рождении» ответить весьма сложно. Все зависит от индивидуальных особенностей развития, генетики. Если предположить, что в среднем к трем годам детский мозг становится на 80% похож на взрослый по объему, то примерное количество нейронов варьируется от 65–80 миллиардов. Также следует учесть, что прочность синапсов (участков, которые связывают нейроны между собой) с момента рождения постоянно растет.

    Нейропластичность

    Развитие нейронных связей в головном мозге сопряжено с созданием новых синапсов и модификацией существующих. Возможность модификаций обусловлена синаптической пластичностью — изменением «мощности» синапса в ответ на активацию рецепторов на постсинаптической клетке.

    Человек может запоминать информацию и обучаться благодаря пластичности мозга. Нарушение нейронных связей головного мозга вследствие черепно-мозговых травм и нейродегенеративных заболеваний благодаря нейропластичности не становится фатальным.

    Нейропластичность обусловлена необходимостью изменяться в ответ на новые условия жизни, но она может как решать проблемы человека, так и создавать их. Изменение мощности синапса, например, при курении — это тоже отражение пластичности мозга. От наркотиков и обсессивно-компульсивного расстройства так сложно избавиться именно из-за неадаптивного изменения синапсов в нейронных сетях.

    На нейропластичность большое влияние оказывают нейротрофические факторы. Н. В. Гуляева подчеркивает, что различные нарушения нейронных связей происходят на фоне снижения уровней нейротрофинов. Нормализация уровня нейротрофинов приводит к восстановлению нейронных связей головного мозга.

    Оптимизация уровней нейротрофинов пока не может осуществляться путем прямой их доставки в мозг. Зато человек может опосредованно влиять на уровни нейротрофинов через физические и когнитивные нагрузки.

    Можно ли вернуть утраченное?

    Как показывает практика, лучше беречь все нейроны (и организм в целом) еще с молодости. С годами связи ослабевают, и впору не сдаться, а начать напрягать мозг информацией, тренировать его, думать, играть в логические игры и шарады, разгадывать кроссворды.

    Однозначно стоит бросить вредные привычки. Они мешают организму развиваться в полную силу и притупляют остроту чувств. Как и чувство любви, заботы, радости и так далее.

    Не стоит пробовать вернуть нейроны с помощью введения стволовых клеток. Будет эффект, но рисковый. Сколько нейронов в мозг человека вернется — неизвестно, зато известны печальные последствия. Пусть пока это только опыты. До сих пор врачи не могут выяснить, почему при введении стволовых клеток животным 30–40% процентов случаев заканчиваются развитием злокачественных новообразований.

    Когнитивные нагрузки

    Обзоры исследований показывают, что упражнения улучшают настроение и познавательные способности. Данные свидетельствуют о том, что эти эффекты обусловлены изменением уровня нейротрофического фактора (BDNF) и оздоровлением сердечно-сосудистой системы.

    https://www.youtube.com/watch?v=IvpJUxH6i8M

    Высокие уровни BDNF были связаны с лучшими показателями пространственных способностей, эпизодической и вербальной памяти. Низкий уровень BDNF, особенно у пожилых людей, коррелировал с атрофией гиппокампа и нарушениями памяти, что может быть связано с когнитивными проблемами, возникающими при болезни Альцгеймера.

    Изучая возможности по лечению и профилактике Альцгеймера, исследователи часто говорят о незаменимости физических упражнений для людей. Так, исследования показывают, что регулярная ходьба влияет на размер гиппокампа и улучшает память.

    Физические нагрузки увеличивают скорость нейрогенеза. Появление новых нейронов — важное условие для переучивания (приобретения нового опыта и стирания старого).

    Нейронные связи головного мозга развиваются, когда человек находится в обогащенной стимулами среде. Новый опыт — ключ к увеличению нейронных связей.

    Новый опыт — это конфликт, когда проблема не решается теми средствами, которые уже есть у мозга. Поэтому ему приходится создавать новые связи, новые шаблоны поведения, что связано с увеличением плотности шипиков, количества дендритов и синапсов.

    Обучение новым навыкам приводит к образованию новых шипиков и дестабилизации старых соединений шипиков с аксонами. Человек вырабатывает новые привычки, а старые исчезают. Некоторые исследования связывают когнитивные расстройства (СДВГ, аутизм, умственную отсталость) с отклонениями в развитии шипиков.

    Шипики очень пластичны. Количество, форма и размер шипиков связаны с мотивацией, обучением и памятью.

    Время, требующееся на изменения их формы и размера, измеряется буквально в часах. Но это значит также, что настолько же быстро новые соединения могут исчезать. Поэтому лучше всего отдавать предпочтение кратким, но частым когнитивным нагрузкам, чем длительным и редким.

    Алкоголь – враг нейронам… Да или нет?

    Алкоголь является легальным наркотиком, который помогает вызывать «дофаминовое» привыкание: если выпить – станет легче, расслабленным будет организм; стало плохо – выпить, чтобы стало опять хорошо. И так до бесконечности. Точнее, до первых признаков алкоголизма. К слову, выпить с утра для того, чтобы день начинался легче, – это уже первый их признаков. Затем алкоголь активно меняет мозговую активность и деятельность человека. Собственно, человеческий облик также меняется в худшую сторону. В итоге, сложно подсчитать, сколько нейронов в мозге человека убивает алкоголь. Смотря как человек употребляет и в каких дозах. Есть даже мнение, что гибели клеток не происходит, этанол-де просто разрушает связи между нейронами и различными участками мозга. И связи эти обратимы. Как только человек откажется от пагубной привычки, они восстановятся. Тем не менее регулярное употребление (и уж тем более злоупотребление) алкогольсодержащих напитков способно привести к заболеваниям, которые разрушают мозг. Так что определенная доля истины в якобы мифе о том, что спиртное убивает мозг, все же есть.

    Образ жизни

    — омега-3 (рыба, семена льна, киви, орехи);

    — куркумин (карри);

    — флавоноиды (какао, зеленый чай, цитрусовые, темный шоколад);

    — витамины группы В;

    — витамин Е (авокадо, орехи, арахис, шпинат, пшеничная мука);

    — холин (куриное мясо, телятина, яичные желтки).

    Большинство перечисленных продуктов опосредованно влияют на нейротрофины. Позитивное влияние диеты усиливается при наличии физических упражнений. Кроме того, умеренное ограничение количества калорий в рационе стимулирует экспрессию нейротрофинов.

    Для восстановления и развития нейронных связей полезно исключение насыщенных жиров и рафинированного сахара. Продукты с добавленными сахарами снижают уровни нейротрофинов, что негативно сказывается на нейропластичности. А высокое содержание насыщенных жиров в еде даже тормозит восстановление мозга после черепно-мозговых травм.

    Среди негативных факторов, затрагивающих нейронные связи: курение и стресс. Курение и длительный стресс в последнее время ассоциируют с нейродегенеративными изменениями. Хотя непродолжительный стресс может быть катализатором нейропластичности.

    Функционирование нейронных связей зависит и ото сна. Возможно, даже больше, чем от всех остальных перечисленных факторов. Потому что сам по себе сон — «это цена, которую мы платим за пластичность мозга» (Sleep is the price we pay for brain plasticity. Ch. Cirelli — Ч. Цирелли).

    Резюме

    Как улучшить нейронные связи головного мозга? Положительное влияние оказывают:

    • физические упражнения;
    • задачи и трудности;
    • полноценный сон;
    • сбалансированная диета.

    Негативно воздействуют:

    • жирная пища и сахар;
    • курение;
    • длительный стресс.

    Мозг чрезвычайно пластичен, но «лепить» из него что-то очень сложно. Он не любит тратить энергию на бесполезные вещи. Быстрее всего развитие новых связей происходит в ситуации конфликта, когда человек не способен решить задачу известными методами.

    Рейтинг
    ( 2 оценки, среднее 4.5 из 5 )
    Понравилась статья? Поделиться с друзьями:
    Лечение души
    Для любых предложений по сайту: [email protected]